Course Title: Microprocessor
Course no: CSC-153
Credit hour: 3
Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8

Nature of course: Theory (3 Hrs.) + Lab (3 Hrs.)

Course Synopsis: This course contains of fundamental concepts of computer organization, basic I/O interfaces and Interrupt operations.

Goal: The course objective is to introduce the operation, programming and application of microprocessor

Unit 1: Introduction (3 hrs)
- Definition of microprocessor and its application
- Evolution of microprocessor
- Von Neumann architecture
- Basic organization of microprocessor
 - Microprocessor: Arithmetic and logic units (ALU), Control unit (CU), Registers
 - Memory
 - Input / Output
 - System bus: Data, Address and Control bus

Unit 2: Basic Computer Architecture (10 hrs)
- SAP – 1 architecture: Block diagram, and function of each block
 - 8-bit "W" bus
 - 4-bit program counter
 - 4-bit memory address register (MAR)
 - 16x8 bit memory
 - 8-bit instruction register (IR)
 - 8-bit accumulator
 - 8-bit B register
 - 8-bit adder – subtracter
 - 8-bit output register
- SAP – 1 instructions
 - LDA, ADD, SUB, OUT, HLT
- Fetch and execution cycle of SAP-1 instructions
 - Fetch cycle: Address state, Increment state, Memory state
 - Execution cycle of LDA, ADD instructions
- Microprogram
 - Microinstructions of SAP-1 instructions
- SAP-2 architecture: Block diagram and function of each block
- Architectural differences with SAP-1
 - Bidirectional registers
 - Flags
- Instructions sets

Unit 3: Microprogram (1.5 hrs)
- Microinstructions of SAP-2 instructions
- Architectural differences with SAP-2
- Instructions sets
Unit 3: Instruction cycle (3hrs)
- Instruction cycle, machine cycle and T states 1 hr
 - Machine cycle of 8085 microprocessor: Op-code fetch, Memory read, memory write, I/O read, I/O write, Interrupt
- Fetch and execute operation, timing diagram 1.5 hrs
 - Timing diagram of MOV, MVI, IN, OUT, LDA, STA
- Fetch and execute overlap 0.5 hr

Unit 4: Intel 8085/8086/8088 (8 hrs)
- Intel 8085 microprocessor 4.5 hrs
 - Functional block diagram
 - Pin configuration
 - Description of each blocks: Registers, Flag, Data and address bus, Timing and control unit, Interrupts
 - Instructions – opcode and operands
 - Addressing modes
 - Instruction and data flow
- Intel 8086/8088 microprocessor 3.5 hrs
 - Functional block diagram of 8086 microprocessor and description of each block: Registers, Flags, Address and Data bus
 - Introduction to 8088 microprocessor and its block diagram
 - Comparison with 8085 microprocessor
 - Assembly instructions- mnemonic and operands
 - Addressing modes

Unit 5: Assembly Language Programming (9 hrs)
- Programming with Intel 8085 microprocessor 4.5 hrs
 - Instruction format
 - Instruction types: Data transfer, Arithmetic, Logic, Branching, Miscellaneous
 - Simple sequence programs, Branching, Looping
- Programming with Intel 8086 microprocessor 4.5 hrs
 - Assembly instruction format
 - Mnemonics and operands
 - Macro assembler
 - Assembling and linking
 - Assembler directives, comments
 - Instruction sets
 - Data transfer: - MOV, IN, OUT, LEA
 - Arithmetic and logic: - ADD, SUB, INC, DEC, MUL, DIV, AND, OR, XOR, NOT, CMP, DAA, AAA, ROR, RCR, ROL, RCL, SHL, SHR
 - Branching: - JMP, CALL, RET, LOOP
 - Stack: PUSH, POP
 - INT 21h functions
 - 01H, 02H, 09H, 0AH, 4CH
 - INT 10h functions
 - 00H, 01H, 02H, 06H, 07H, 08H, 09H, 0AH
 - Simple sequence programs, Branching, Looping
 - Debugging
Unit 6: Basic I/O, Memory R/W and Interrupt Operations (6 Hrs)

- Memory read/write, Input/output read/write operation in 8085 microprocessor based system
 1 hr
- Direct memory access (DMA)
 o Introduction, advantage and application
 o DMA controller 8237 interfacing
 1.5 hrs
- Interrupt
 o 8085 interrupt pins and interrupt priority
 o Maskable and non-maskable interrupts
 o Vector and polled
 1.5 hrs
- 8259 operation
 o Block diagram and explanation
 o Priority modes and other features
 2 hrs

Unit 7: Input/output Interfaces (6 hrs)

- Parallel communication – introduction and applications
 0.5 hr
- Serial communication
 o Introduction and applications
 o Introduction to Programmable Communication Interface 8251
 o Basic concept of synchronous and asynchronous modes
 1.5 hrs
- Simple I/O, strobe I/O, Single handshake I/O, Double handshake I/O
 0.5 hr
- 8255A and its working
 o Block diagram
 o Modes of operation
 o Control word
 1.5 hrs
- RS-232: Introduction, pin configuration (9pin and 25 pin) and function of each pin. Interconnection between DTE-DTE and DTE-DCE
 1 hr
- Keyboard and display controller: Introduction o 8279
 1 hr

References:

1. Ramesh S. Gaonkar, Microprocessor Architecture, Programming, and Applications with 8085, Prentice Hall (For unit 1, 3, 4, 5, 6 and 7)
2. A.P. Malvino and J.A. Brown, Digital Computer Electronics, Tata McGraw Hill (For unit 2)
3. D.V. Hall, Microprocessors and Interfacing – Programming and Hardware, McGraw Hill (For unit 4, 5, 6, and 7)
4. Peter Abel, IBM PC Assembly Language Programming, McGraw Hill (For unit 4 and 5)